CircuLex™ | ircuLex TM Human CIRP ELISA Kit User's Manual | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | For Research Use Only, Not for use in diagnostic procedures | | | ELISA Kit for Measuring Human CIRP | | | CircuLex Human CIRP ELISA Kit | | | Cat# CY-8103 | | | Human CIRP ELISA Kit User's Manual For Research Use Only, Not for use in diagnostic procedures ELISA Kit for Measuring Human CIRP CircuLex Human CIRP ELISA Kit Cat# CY-8103 Intended Use | | # **Intended Use** The CycLex Research Product CircuLex Human CIRP ELISA Kit is used for the quantitative measurement of human CIRP in cell states, cell culture supernatants, and other biological media. This assay kit is for research us only and not for use in diagnostic or therapeutic procedures. # Storage - Upon receipt store all components at 4°C. Don't expose reagents to excessive light. 1 Version#: 151027 # CircuLex[™] #### Human CIRP ELISA Kit User's Manual #### For Research Use Only, Not for use in diagnostic procedures # Introduction CIRP, also known as CIRBP (cold inducible RNA binding protein), is a 172 amino acids protein belonging to the glycine-rich RNA binding protein family, which possesses an amino-terrinal RNA recognition motif, and a carboxyl-terminal glycine-rich domain consisting of several RGC motifs (1). CIRP is constitutively expressed in a wide variety of tissues and cells in low amounts and can be induced by cellular stresses such as cold shock, UV irradiation and hypoxia (2-4). Upon stress induction, CIRP shuttles from the nucleus to the cytoplasm to stabilize target mRNAs (5, 6). (RP might play a role in cellular processes such as transcription, translation and DNA recombination. It acts as an RNA chaperone to facilitate translation (7) and plays an important role in the circadian rhythm of living cells because CIRP is required for high-amplitude circadian gene expression (8). Another side to the picture, it was reported that CIRP is increased and released into the bloodstream in response to hemorrhagic shock and sepsis. When CIRP triggers inflammation, it contributes to damage of organs in the body (9). In macrophages under hypoxic stress, CIRP translocates from the nucleus to the cytosol and is released. The activity of extracellular CIRP is mediated through the Toll-like receptor 4-myeloid differentiation factor 2 complex (9). In conclusion, extracellular CIRP is an endogenous proinflammatory mediator and one of damage-associated molecular patterns (DAMPs) that trigger inflammatory responses during hemorrhagic shock and sepsis. # Principle of the Assay The CycLex Research Product CircuLex Human CIRP ELISA Kit employs the quantitative sandwich enzyme immunoassay technique. A monoclonal antibody specific for CIRP is pre-coated onto a microplate. Standards and samples are pipetted into the wells and the immobilized antibody binds any CIRP present. After washing away any unbound substances, an HRP conjugated antibody specific for CIRP is added to the wells. Following a wash to remove any unbound antibody HRP conjugate, the remaining conjugate is allowed to react with the substrate H₂O₂-tetramethylbenzidine. The reaction is stopped by addition of acidic solution and absorbance of the resulting yellow product is measured at 450 nm. The absorbance is proportional to the concentration of human CIRP. A standard curve is constructed by plotting absorbance values versus farman CIRP concentrations of calibrators, and concentrations of unknown samples are determined using this standard curve. User's Manual ### For Research Use Only, Not for use in diagnostic procedures ## **Summary of Procedure** Add 100 µL of diluted samples to the wells Incubate for 1 hour at room temp. Wash the wells \downarrow Add 100 µL of HRP conjugated anti-human CIRP antibody Incubate for 1 hour at room temp. Wash the wells \downarrow Add 100 µL of Substrate Reagent Incubate for 10-20 minutes at room temp. Add 100 µL of Stop Solution \downarrow Measure absorbance at 450 nm # **Materials Provided** All samples and standards should be assayed in duplicate. The following components are supplied and are sufficient for the one 96-well microplate kit: **Microplate:** One microplate supplied ready we use, with 96 wells (12 strips of 8-wells) in a foil, zip-lock bag with a desiccant pack. Wells are coated with anti-CIRP monoclonal antibody as a capture antibody. **10X Wash Buffer:** One bottle containing 100 mL of 10X buffer containing Tween[®]-20 **Dilution Buffer:** One bottle containing 50 mL of 1X buffer; use for reconstitution of Human CIRP Standard and sample dilution, Ready to use. Human CIRP Standard: Two vials, each containing 64 ng of lyophilized recombinant human CIRP **HRP conjugated Detection Antibody:** One bottle containing 12 mL of HRP (horseradish peroxidase) conjugated anti-CIRP antibody. Ready to use. **Substrate Reagent:** One bottle containing 20 mL of the chromogenic substrate, tetra-methylbenzidine (TMB). Ready to use. Stop Solution: One bottle containing 20 mL of 1 N H₂SO₄. Ready to use. # CircuLex. TM #### Human CIRP ELISA Kit User's Manual ### For Research Use Only, Not for use in diagnostic procedures - Pipettors: 2-20 μL, 20-200 μL and 200-1000 μL precision pipettors with disposable tips - (Optional) Microplate washer: Manual washing is possible but not preferable - Juse On July and 200-1000 µL Lettor Inaker And tubes: For sample preparation Geroplate washer: Manual washing is possible bu. Jer: Capable of measuring absorbance in 96-well plates avelengths of 450/550 or 450/550 m can also be used. The ength of 450 mm, which will give a somewhat higher reading donal) Software package facilitating data generation and analysis. Jo or 1,000 mL graduated cylinder Reagent reservoirs Deionized water of the highest quality Disposable paper towels • Plate reader: Capable of measuring absorbance in 96-well plates at deal wavelengths of 450/540 nm. Dual wavelengths of 450/550 or 450/595 nm can also be used. The plate can also be read at a single Version#: 151027 # CircuLexTM #### Human CIRP ELISA Kit User's Manual ### For Research Use Only, Not for use in diagnostic procedures ## **Precautions and Recommendations** - Allow all the components to come to room temperature before use. - All microplate strips that are not immediately required should be returned to the zip-lock pouch, which must be carefully resealed to avoid moisture absorption. - Do not use kit components beyond the indicated kit expiration date. - Use only the microtiter wells provided with the kit. - Rinse all detergent residues from glassware. - Use deionized water of the highest quality. - Do not mix reagents from different kits. - The buffers and reagents used in this kit contain NaN₃ as preservatives. Care should be taken to avoid direct contact with these reagents. - Do not mouth pipette or ingest any of the reagents. - Do not smoke, eat, or drink when performing the osay or in areas where samples or reagents are - Dispose of tetra-methylbenzidine (TMB) containing solutions in compliance with local regulations. - Avoid contact with the acidic Stop Solution and Substrate Solution, which contains hydrogen peroxide. - Wear gloves and eye protection when handling immunodiagnostic materials and samples of human origin, and these reagents. In case of contact with the Stop Solution and the Substrate Solution, wash skin thoroughly with water and seek medical attention, when necessary. - Biological samples may be contaminated with infectious agents. Do not ingest, expose to open wounds or breathe aerosols. Wear protective gloves and dispose of biological samples properly. - CAUTION: Sulfuric Acid is a strong acid. Wear disposable gloves and eye protection when handling Stop Solution. User's Manual ### For Research Use Only, Not for use in diagnostic procedures # Sample Collection and Storage Cell lysates: Prepare cell lysates (see "Preparation of Cell Lysates" in this section below. Assay immediately or store the samples on ice for a few hours before assaying. Aliquots of the samples may also be stored at below -70°C for extended periods of time. Avoid repeated freeze-thaw cycles Cell culture supernatants: Remove any particulates by centrifugation and assay immediately or aliquot and store samples at below -70°C. Avoid repeated freeze-thaw cycles. Other biological samples: Remove any particulates by centrifugation and assaminmediately or aliquot and store samples at below -70°C. Avoid repeated freeze-thaw cycles. #### For reference **Serum:** Use a serum separator tube and allow samples to clot for 0 ± 30 minutes. Centrifuge the samples at 4°C for 10 minutes at 1,000 x g. Remove serum and assay immediately or store samples on ice for up to 6 hours before assaying. Aliquots of serum may also be stored at below -70°C for extended periods of time. Avoid repeated freeze-thaw cycles. **Plasma:** Collect plasma using EDTA-Na₂ as the anticoagulant. If possible, collect the plasma into a mixture of EDTA-Na₂ and Futhan (FUT175) to stabilize the sample against spontaneous in vitro complement activation. Immediately centrifuge samples at 4°C for 15 minutes at 1,000 x g. Assay immediately or store samples on ice for up to 6 hours before assaying. Aliquots of plasma may also be stored at below -70°C for extended periods of time. World repeated freeze-thaw cycles. **Note:** Citrate plasma has not been validated for use in this assay. #### **Preparation of Cell Lysates** Several extraction methods can be used for measurement cellular total CIRP. The following protocol has been successfully applied to HeLa colline and is provided as an example of suitable methods. Users should optimize the cell extraction procedure for their own applications. It is strongly advised that users always perform an initial experiment to determine the proper dilution to be used in subsequent experiments. This need not be any more than a single time point assay using serial dilutions of the cell lysate. Que strip (eight wells) of the anti-CIRP monoclonal antibody-coated microplate should be sufficient for this initial experiment. All steps of cell lysate preparation should be performed at 4°C and recovered cell lysate should be kept at -70°C. # A. Cell Lysis Buffer 50 mM Tris HCL, pH 7.5, 250 mM NaCl, 10 % glycerol, 0.1 % NP-40, 5 mM EDTA-2Na (pH 7.5), 0.2 mM PMS 1 μg/mL pepstatin, 0.5 μg/mL leupeptin, 0.2 mM DTT # B. Preparation of poly-L-lysine coated plate Coat the dish with 25 µg/mL poly-L-lysine (PLL) in PBS for 4-12 hours at 37°C. Subsequently go to a washing step with PBS. # Treatment of Cells Plate adherent cells in PLL-coated \emptyset 6 cm dish at around 3 x 10⁵ cells/dish. User's Manual ### For Research Use Only, Not for use in diagnostic procedures - 2. Incubate the culture dish at 37°C overnight in CO₂ incubator. - 3. (Cold treatment) Incubate the culture dish at 32°C for 8-24 hours in CO₂ incubator. or 3'. (Drug treatment) Add appropriate amount of test compound and vehicle to each well. Incubate the culture dish at 37°C for appropriate time. #### D. Cell Extraction **Note:** This protocol has been successfully applied to HeLa cell line. Users should optimize the cell extraction procedure for their own applications. - 4. Wash cells three times with ice-cold PBS. Remove any remaining PBS by decanting. Invert the dish and blot it against clean paper towels. At this point the cells in the plate can be frozen at below -70°C and lysed at a later date. - 5. Lyse the cells by adding 0.2 mL* of Cell Lysis Buffer for 60-90 minutes at 4°C, with rotating at ca.300 rpm by an orbital microplate shaker. - * The appropriate volume of Cell Lysis Buffer depends on the cell line, the cell number and the amount of total CIRP. To get a rough idea you could adjust the cell concentration to around 2-4 x 106 cells/mL in Cell Lysis Buffer. Resulting protein concentration of the HeLa cell lysate should be 0.8-1.6 mg/mL using this procedure. - 6. Transfer the cell lysates to microcentrifuse tubes and centrifuge at 15,000 rpm for 5 minutes at 4° C. - 7. Transfer the clear cell lysates to new microcentrifuge tubes. Dilute these cell lysates 50-100 times with Dilution Buffer. 100 μ L of these diluted cell lysates are ready for assay. Go to the section "Standard Assay Procedure for Human CIRP" below. Typical data using this protocolare shown in Fig.1 of the section "Example of Test Results" below. The cell lysates can be stored at below -70°C. Avoid multiple freeze/thaw cycles. After thaw the cell lysates, centrifuge at 15,000 rpm for 5 minutes at 4°C again since the cell lysates should be clear of any sediments or particulate matter. NOTE: THE ABOVE PROCEDURES ARE INTENDED ONLY AS A GUIDELINE. THE OPTIMAL EXPERIMENTAL CONDITIONS WILL VARY DEPENDING ON THE PARAMETERS BEING INVESTIGATED, AND MUST BE DETERMINED BY THE INDIVIDUAL USER. NO WARRANTY OR GUARANTEE OF PERFORMANCE USING THESE PROCEDURES IS MADE OR IMPLIED. User's Manual ### For Research Use Only, Not for use in diagnostic procedures # **Detailed Protocol** The CycLex Research Product CircuLex Human CIRP ELISA Kit is provided with removable strips of wells so the assay can be carried out on separate occasions using only the number of strips required for the particular determination. Since experimental conditions may vary, an aliquot of the Human CIRP Standard within the kit should be included in each assay as a calibrator. Disposable pipette tips and reagent troughs should be used for all liquid transfers to avoid cross-contamination of reagents or samples. ### **Preparation of Working Solutions** All reagents need to be brought to room temperature prior to the assay. Assay reagents are supplied ready-to-use, with the exception of 10X Wash Buffer and Human CIRP Standard. - 1. Prepare a working solution of Wash Buffer by adding 100 mL of the **10X Wash Buffer** to 900 mL of deionized (distilled) water. Mix well. Store at 4°C for two weeks or 20°C for long-term storage. - 2. Reconstitute **Human CIRP Standard** with **0.5 mL** of **Dilution Buffer**. The concentration of the human CIRP in vial should be **128 ng/mL**, which is referred as a **Master Standard** of human CIRP. Prepare Standard Solutions as follows: Use the **Master Standard** to produce a dilution series (below). Mix each tube thoroughly before the next transfer. The 25.6 ng/mL standard (Std.1) serves as the highest standard. The **Dilution Buffer** serves as the zero standard (Blank). | | Volume of Standard | Dilution Buffer | Concentration | |-------|---------------------------------------|-----------------|---------------| | Std.1 | 120 μL of Master Standard (128 ng/mL) | 480 μL | 25.6 ng/mL | | Std.2 | 300 μL of Std. 1 (25.6 ng/mL) | 300 μL | 12.8 ng/mL | | Std.3 | 300 μL of Std. 2 (12.8 ng/mL) | 300 μL | 6.4 ng/mL | | Std.4 | 300 μL of Std. 3 (6.4 ng/mL) | 300 μL | 3.2 ng/mL | | Std.5 | 300 μL of Std. 4 (3.2 ng/mL) | 300 μL | 1.6 ng/mL | | Std.6 | 300 μL of Std. 5 (1,6 μg/mL) | 300 μL | 0.8 ng/mL | | Std.7 | 300 μL of Std. 6 (0.8 ng /mL) | 300 μL | 0.4 ng/mL | | Blank | Q* - | 300 μL | 0 ng /mL | **Note:** Do not use a repeating pipette. Change tips for every dilution. Unused portions of Master Standard should be aliquoted and stored at below -70°C immediately. Avoid multiple freeze and thaw cycles # Sample Preparation Dilute samples with Dilution Buffer. - Cell lysates require the proper dilution ratio that differs depending on cell types and extraction conditions. Refer to "Preparation of Cell Lysates" in the section "Sample Collection and Storage" above - Cell culture supernatants require neat to appropriate dilution. - Secum or plasma requires at least a 20-fold dilution to avoid nonspecific reactions. User's Manual ### For Research Use Only, Not for use in diagnostic procedures ### Standard Assay Procedure for Human CIRP - 1. Remove the appropriate number of microtiter wells from the foil pouch and place them into the well holder. Return any unused wells to the foil pouch, refold, seal with tape and store at 4°C. - 2. Dilute samples with **Dilution Buffer**. (See "Sample Preparation" above.) - 3. Pipette 100 μL of Standard Solutions (Std1-Std7, Blank) and diluted samples in duplicates, into the appropriate wells. - 4. Incubate the plate <u>at room temperature (ca.25°C) for 1 hour, shaking at ca.300 rpm on an orbital microplate shaker.</u> - 5. Wash 4-times by filling each well with Wash Buffer (350 µL) using a squirt bottle, multi-channel pipette, manifold dispenser or microplate washer. - 6. Add 100 µL of HRP conjugated Detection Antibody into each well - 7. Incubate the plate <u>at room temperature (ca.25°C) for 1 hour</u>, shaking at ca.300 rpm on an orbital <u>microplate shaker.</u> - 8. Wash 4-times by filling each well with Wash Buffer 350 μL) using a squirt bottle, multi-channel pipette, manifold dispenser or microplate washer. - 9. Add 100 μL of Substrate Reagent. Avoid exposing the microtiter plate to direct sunlight. Covering the plate with e.g. aluminum foil is recommended. Return Substrate Reagent to 4°C immediately after the necessary volume is removed - 10. Incubate the plate <u>at room temperature (ca.25°C) for 10-20 minutes</u>, shaking at ca.300 rpm on an <u>orbital microplate shaker</u>. The incubation time may be extended up to 30 minutes if the reaction temperature is below 20°C. - 11. Add 100 µL of Stop Solution (each well in the same order as the previously added Substrate Reagent. - 12. Measure absorbance in each well using a spectrophotometric microplate reader at dual wavelengths of 450/540 nm. Dual wavelengths of 450/550 or 450/595 nm can also be used. Read the microplate at 450 nm if only a single wavelength can be used. Wells must be read within 30 minutes of adding the Stop Solution. - **Note-1:** Complete removal of liquid at each step is essential to good performance. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels. - **Note-2:** Retable standard curves are obtained when either O.D. values do not exceed 0.25 units for the blank (zero concentration), or 3.0 units for the highest standard concentration. The plate should be monitored at 5-minute intervals for approximately 30 minutes. - Note-3 If the microplate reader is not capable of reading absorbance greater than the absorbance of the highest standard, perform a second reading at 405 nm. A new standard curve, constructed using the values measured at 405 nm, is used to determine human CIRP concentration of off-scale samples. The readings at 405 nm should not replace the on-scale readings at 450 nm. User's Manual #### For Research Use Only, Not for use in diagnostic procedures # **Calculations** Average the duplicate readings for each standard, control, and sample and subtract the average zero standard optical density. Plot the optical density for the standards versus the concentration of the standards and draw the best curve. The data can be linearized by using log/log paper and regression analysis may be applied to the log transformation. To determine the human CIRP concentration of each sample, first find the absorbance value on the y-axis and extend a horizontal line to the standard curve. At the point of intersection, extend a vertical line to the x-axis and read the corresponding human CIRP concentration. If the samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor. - 1. The dose-response curve of this assay fits best to a sigmoidal 4-parameter logistic equation. The results of unknown samples can be calculated with any computer program having a 4-parameter logistic function. It is important to make an appropriate mathematical adjustment to accommodate for the dilution factor. - 2. Most microtiter plate readers perform automatic calculations of analyte concentration. The calibration curve is constructed by plotting the absorbance (Y) of calibrators versus log of the known concentration (X) of calibrators, using the 4-parameter function. Alternatively, the logit log function can be used to linearize the calibration curve (i.e. logit of absorbance (Y) is plotted versus log of the known concentration (X) of calibrators). # **Measurement Range** The measurement range is 0.4 ng/mL to 25.6 ng/mL. Any sample reading higher than the highest standard should be diluted with Dilution Buffer in higher dilution and re-assayed. Dilution factors need to be taken into consideration in calculating the human CIRP concentration. # **Troubleshooting** - 1. All samples and standards should be assayed in duplicate, using the protocol described in the **Detailed**Protocol. Incubation times or temperatures significantly different from those specified may give erroneous results. - Poor duplicates, accompanied by elevated values for wells containing no sample, indicate insufficient washing. If all instructions in the **Detailed Protocol** were followed accurately, such results indicate a need for washer maintenance. - 3. Overall low signal may indicate that desiccation of the plate has occurred between the final wash and addition of Substrate Reagent. Do not allow the plate to dry out. Add Substrate Reagent immediately after wash. # Reagent Stability All of the reagents included in the CycLex Research Product CircuLex Human CIRP ELISA Kit have been tested for stability. Reagents should not be used beyond the stated expiration date. Upon receipt, kit reagents should be stored at 4°C, except the reconstituted Human CIRP Standard must be stored at below -70°C. Coated assay plates should be stored in the original foil bag sealed by the zip lock and containing a desiccant pack. User's Manual ### For Research Use Only, Not for use in diagnostic procedures # **Assay Characteristics** ### 1. Sensitivity The limit of detection (defined as such a concentration of human CIRP giving absorbance bigher than mean absorbance of blank* plus three standard deviations of the absorbance of blank: A blank + 3SD blank) is better than 0.201 ng/mL of sample. * Dilution Buffer was pipetted into blank wells. ## Typical Standard Curve 11 Version#: 151027 # CircuLex™ #### Human CIRP ELISA Kit User's Manual ### For Research Use Only, Not for use in diagnostic procedures #### 2. Precision <u>Intra-assay Precision</u> (Precision within an assay) Three samples* of known concentration were tested sixteen times on one plate to assess intra assay precision. • Intra-assay (Within-Run, n=16) CV=4.7-9.1 % *Sample: Cell culture supernatant ### Human CIRP conc. (ng/mL) | | Sample 1 | Sample 2 | Sample 3 | |------|----------|----------|----------| | 1 | 8.04 | 9.10 | 13.11 | | 2 | 7.88 | 9.23 | 12.77 | | 3 | 7.15 | 10.03 | 13.25 | | 4 | 7.34 | 10.71 | 14.06 | | 5 | 7.81 | 11.40 | 13.53 | | 6 | 8.19 | 10.96 | 13.54 | | 7 | 8.21 | 10.85 | 13.37 | | 8 | 8.18 | 10.33 | 12.97 | | 9 | 7.68 | 10.96 | 13.89 | | 10 | 8.61 | 11.12 | 13.69 | | 11 | 8.06 | 11.17 | 13.59 | | 12 | 8.39 | 11.26 | 14.43 | | 13 | 8.13 | 11.01 | 14.70 | | 14 | 8.95 | 10.86 | 14.55 | | 15 | 9.61 | 10.54 | 14.87 | | 16 | 10.02 | 10.93 | 14.40 | | MAX. | 10.0 | 11.4 | 14.9 | | MIN. | 7.2 | 9.1 | 12.8 | | MEAN | 8.3 | 10.7 | 13.8 | | S.D. | 0.7 | 0.7 | 0.6 | | C.V. | 9.1% | 6.3% | 4.7% | <u>Inter-assay Precision</u> (Precision between assays) Three samples* of known concentration were tested in five separate assays to assess inter-assay precision. • Inter-assay (Run-to-Run, n=5) CV=2.8-5.9 % *Sample: Cell culture supernatant # Human CIRP conc. (ng/mL) | | Sample 1 | Sample 2 | Sample 3 | |------|----------|----------|----------| | 1 | 6.1 | 11.5 | 14.7 | | 2 | 7.0 | 11.6 | 17.0 | | 3 | 6.4 | 12.0 | 16.5 | | 4 | 6.2 | 11.6 | 16.9 | | 5 | 6.5 | 12.2 | 15.9 | | MAX. | 7.0 | 12.2 | 17.0 | | MIN. | 6.1 | 11.5 | 14.7 | | MEAN | 6.4 | 11.8 | 16.2 | | S.D. | 0.3 | 0.3 | 1.0 | | C.V. | 5.4% | 2.8% | 5.9% | # CircuLex. TM ## 3. Linearity to 1.0. User's Manual ## For Research Use Only, Not for use in diagnostic procedures # **Example of Test Results** Fig.1 Human CIRP concentration in HeLa cell lysates after cold treatment (at 32°C) for indicated times Fig.2 Human CIRP concentration in cell culture supernatants # CircuLex™ #### Human CIRP ELISA Kit #### User's Manual #### For Research Use Only, Not for use in diagnostic procedures # References - Nishiyama H, Higashitsuji H, Yokoi H, et al. Cloning and characterization of human CIRP (coldinducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene. 1997; 204:115–120. - Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol. 1997; 137:899–908. - 3. Sheikh MS, Carrier F, Papathanasiou MA, et al. Identification of several human homologs of hamster DNA damage-inducible transcripts. Cloning and characterization of a novel UV-inducible cDNA that codes for a putative RNA-binding protein. J Biol Chem. 1997; 272:26720–26726. - 4. Wellmann S, Buhrer C, Moderegger E, et al. Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism. J Cell Sci. 2004; 117:1785–1794. - 5. De Leeuw F, Zhang T, Wauquier C, Huez G, Kruys V, Greydan C. The cold-inducible RNAbinding protein migrates from the nucleus to cytoplasmic these granules by a methylationdependent mechanism and acts as a translational repressor. Exp Cell Res. 2007; 313:4130–4144. - 6. Yang C, Carrier F. The UV-inducible RNA-binding protein A18 (A18 hnRNP) plays a protective role in the genotoxic stress response. J Biol Chem. 2001; 276:47277–47284. - Gualerzi CO, Giuliodori AM, Pon CL. Transcriptional and posttranscriptional control of cold-shock genes. J Mol Biol. 2003; 331: 527–539. - 8. Morf J, Rey G, Schneider K, Stratmann M, Fujita J. et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 2013; 338: 379–383 - 9. Qiang X, Yang WL, Wu R, Zhou M, Jacob A. et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med. 2013; 19:1489-95 # CircuLex TM #### Human CIRP ELISA Kit User's Manual ### For Research Use Only, Not for use in diagnostic procedures ## **Related Products** - * CircuLex Mouse CIRP ELISA Kit: Cat# CY-8102 - * CircuLex Human CIRP ELISA Kit: Cat# CY-8103 # <u>Damage-associated molecular patterns</u> (DAMPs) Related Products - ·ELISA Kit - * CircuLex S100A12/EN-RAGE ELISA Kit: Cat# CY-8058 - * CircuLex S100A8/MRP8 ELISA Kit: Cat# CY-8061 - * CircuLex S100A9/MRP14 ELISA Kit: Cat# CY-8062 - * CircuLex Human sRAGE ELISA Kit: Cat# CY-8083 - * CircuLex Human Hsp27 ELISA Kit: Cat# CY-8096 - * CircuLex Human CIRP ELISA Kit: Cat# CY-8103 - Other Assay Kit - * CircuLex AGE-RAGE in vitro Binding Assay Kit: Cat# CY-8151 Recombinant Protein (Low Endotoxin) * Human S100A1 Low Endotoxin: Cat# CY-R2451 * Human S100A3 Low Endotoxin: Cat# CY-R2453 * Human S100A4 Low Endotoxin: Cat# CY-R2454 * Human S100A4 T - Recombinant Protein (Low Endotoxin) - * Human S100A7 Low Endotoxin: Cat# CY-R2457 - * Human S100A8 Low Endotoxin: Cat# CY-R2458 - * Human S100A9 Low Endotoxin: Cat# CY-R2459-G - * Human S100A11 Low Endotoxin: Cat# CY-R2461 - * Human S100A12 Low Endotoxin: Cat# CY-R2462-G - * Human S100A14 Low Endotoxin: Cat# CY-R2464 - * Human S100P Low Endotoxin: Cat# CY-R2467 ## PRODUCED BY CycLex Co., Ltd. 1063-103 Terasawaoka Ina, Nagano 396-0002 Japan Fax: +81-265-76-7618 E-mail: info@cyclex.co.jp URL: http://www.cyclex.co.jp CycLex/CircuLex products are supplied for research use only. CycLex/CircuLex products and components thereof may not be resold, modified for resale, or used to manufacture commercial products without prior written approval from CycLex Co., Ltd.. To inquire about licensing for such commercial use, please contact us via email. Cat#: CY-8103 16 Version#: 151027